

Satellite observations of isoprene from the Cross-track Infrared Sounder

Dejian Fu^{1*}, Dylan B. Millet², Kelley C. Wells², Vivienne Payne¹, and Shanshan Yu¹

- ¹ NASA Jet Propulsion Laboratory, California Institute of Technology, USA
- ² University of Minnesota
- * Email contact: dejian.fu@jpl.nasa.gov

Copyright 2018, California Institute of Technology. Government sponsorship acknowledged.

Isoprene: the dominant source of reactive carbon to the atmosphere

- major impacts of secondary organic aerosols, O₃, other oxidants
- large, highly heterogeneous emissions
- central MEGAN v2.1 bottom-up estimate: ~470 TgC/year vs.
 - EDGAR total anthropogenic VOC emissions: ~160 TgC/year (Huang et al., 2017)
 - global methane emissions: ~560 TgC/year (Saunois et al., 2016)

Wasa Wide disparity between bottom-up isoprene flux estimates

Central MEGANv2.1 estimate: 470 TgC/year

MEGANv2.1 as implemented in GEOS-Chem: 206 TgC/year

Strong sensitivity to model meteorology, land cover (vegetation type, leaf area), canopy parameterization ..., besides the built-in emission algorithms

Same emission model & meteorology; different vegetation 214 vs 549 TgC/year

HCHO measurements from space provide top-down constraints

HCHO is produced in high-yield from isoprene oxidation, and HCHO column measurements have informed our understanding of isoprene emissions.

Global isoprene emissions derived from OMI

Bauwens et al., 2016

2005-2013

Bottom-up versus OMI-derived isoprene emissions over Amazonia

-0.5

Other HCHO sources, chemical complexities challenge interpretation

Pyrogenic VOCs

GOME HCHO columns with ATSR fire counts overplotted Barkley et al., 2008

Anthropogenic VOCs

OMI HCHO enhancement over Houston Zhu et al., 2014

Anthropogenic, pyrogenic, and biogenic VOCs

OMI HCHO enhancement over the IGP Chaliyakunnel et al., in revision

Other HCHO sources, chemical complexities challenge interpretation

HCHO:isoprene relationship varies with OH, NO_x

Using Ω_{HCHO} to constrain isoprene sources: we rely on CTMs to accurately capture these effects

Concurrent Ω_{HCHO} and $\Omega_{isoprene}$ measurements would help constrain isoprene emissions and its chemistry

Concurrent Ω_{HCHO} and $\Omega_{isoprene}$ measurements would help constrain isoprene emissions and its chemistry

Sensitivity of $\Omega_{isoprene}$ to OH regime & chemistry

Ω_{HCHO} – more buffered to OH changes

$$\frac{d\Omega_f}{dt} = \alpha k_i [\text{OH}] \Omega_i - \left(k_f [\text{OH}] + J_f \right) \Omega_f - \nabla \cdot \left(\Omega_f \mathbf{u} \right)$$

L(HCHO) buffered due to photolysis

 $P(HCHO) \sim [OH]\Omega_i$, less sensitive to OHchange than is Ω_i

 $\Omega_{\text{isoprene}} / \Omega_{\text{HCHO}}$ – scales closely with OH

 Ω_{isoprene} , Ω_{HCHO} : complementary information on isoprene sources and chemistry (i.e., OH suppression)

^{*} caveat: 2x2.5° model run!

Thermal infrared spectroscopy of isoprene

Feasibility of isoprene measurements using space TIR spectrometers

Challenges

- mainly resides in near-ground since its emission sources at surface and its short life time
- its weak spectral signature, interfered by other species (H₂O, HNO₃, NH₃, CFCs)

CrIS

- 1:30 pm local time overpass when isoprene, thermal contrast, vertical mixing are high
- Lower noise than the other space sensors
- Fine spatial resolution & global coverage enabling the spatial/temporal averaging to achieve the desirable signal to noise ratio for enabling isoprene retrievals

Noise characteristics of CrIS, IASI, AIRS

Atmospheric isoprene spectral signature detected by CrIS

- Species within the spectral region of interest:
 Isoprene, H₂O, CO₂, NH₃, HNO₃, CFC11, CFC12
- Isoprene spectroscopic parameters from Brauer et al. (2014)
- Isoprene u₂₈ band better separated from the interfering species

Rapid verification of the isoprene signals using brightness temperature difference (\triangle BT) approach:

 \circ \triangle BT = radiance@P1 – radiance@P2

CrIS △BT Map

GEOS-Chem Isoprene Column September 2014

△BT distribution reveals presence of isoprene signatures

Monthly averaged signals vs. GEOS-Chem isoprene (C₅H₈) columns for September 2014

Green diamonds: \triangle BT observed by CrIS vs. GEOS-Chem predicted isoprene

- 1) \triangle BT correlates with predicted C₅H₈ columns reveals the presence of C₅H₈ signature in CrIS measurements
- 2) Higher isoprene amount over Amazon region than other regions

Purple plus: predicted relationship using a radiative transfer model (RTM)

- 1) Observed \triangle BT-isoprene correlation matches theoretical expectation
- 2) The \triangle BT offset of the predicted relationship vs. CrIS measurements (off-peak peak radiances), suggest spectral interferents not yet fully represented in the RTM simulation since the simulation does not use the instantaneous atmospheric state, surface and cloud properties. --- While would not be an issue if conducts full physical retrievals of isoprene and interferences.

NASA Approaches for quantifying isoprene columns from CrIS

Full physical retrievals

Developed upon the MUSES full physical retrieval algorithm (Fu et al., 2013; 2016; 2018)

Apply optimal estimation to quantify the isoprene amounts that best fits CrIS radiances co-retrieving atmospheric state, surface/cloud properties, as well as the a priori isoprene profiles

- Pros: (1) detailed sensitivity and uncertainty information for each measurement
 - (2) take the spectral interferences of gases and surface/cloud properties into account
- Cons: (1) demands of computation resources; could be mitigated/addressed via using fast RTM (~23X reduction in computation time), target scenes selections (skipping both cloudy and nocturnal scenes; ~3X reduction)
 - (2) impacts of a priori constraints; does not show significant impacts on the retrieved columns

Artificial neural network

Train an ANN based on simulated data, based on the approach used for IASI NH₃ [Whitburn et al., 2016]

Apply ANN to predict isoprene columns from observed CrIS \triangle BT and other relevant parameters

Dr. Kelley Wells (UofM) is developing an ANN for CrIS Isoprene [Details available in the coming AGU Fall 2018 & AMS 2019 conferences]

- Pros: (1) fast -- negligible computation time
 - (2) does not use a priori constraints
- Cons: (1) does not account for variable sensitivity among target scenes
 - (2) purely empirical approach, lacks of link between radiances and isoprene amounts
 - (3) the impacts of accuracy/precisions of parameters used in the prediction

Full physical retrievals using MUSES algorithm

Step 1: Retrieve temperature, surface/cloud properties, and abundances of other species

△BT from this pre-isoprene retrieval step

=

Simulated BT without isoprene

– CrIS measurements

Note:

It is an approach different than the \triangle BT estimation of off-peak vs. peak radiances.

It accounts for the interferences of instantaneous atmospheric state, and surface/cloud properties for each CrIS measurement.

△BT from pre-isoprene retrieval step

- 1) meets theoretical expectation
- 2) reports \triangle BT ~= 0 (Y axis intercept) when
- 3) takes the spectral interferences of other species, land/cloud properties

Full physical retrievals using MUSES algorithm

Step 2: Retrieve isoprene

Prototype CrIS isoprene retrieval

Single measurement at (69.134W, 8.698S) on September 12, 2014

Ongoing

- 1) conduct step 2 retrievals over Amazon for all September 2014 data, and other seasons
- 2) apply the optimized MUSES algorithm over the globe

Acknowledgements

Brian Drouin, Keeyoon Sung, and Timothy Crawford for providing the laboratory evaluation of the current-state of isoprene spectroscopic parameters.

Kevin Bowman (JPL), John Worden (JPL), Annmarie Eldering (JPL), and Julian Deventer (UMN) for the helpful discussions

NASA ROSES Aura-ACMAP 2017 program